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Abstract. The representation of the Yangian invariant ‘motif’ is considered. The relationship
with the Rogers–Szegö polynomial is studied, whose one-parameter deformation is the
Macdonald polynomial. We propose the deformation of the motifs which provides a new
realization of the Macdonald polynomials for the one-row Young diagrams.

1. Introduction

The Yangian symmetry has appeared in recent studies in statistical mechanics and
mathematical physics. In these studies, the long-range interacting su(n) spin chain called
the Haldane–Shastry (HS) model [1, 2] plays an important role. The Hamiltonian of the HS
model is defined as

HHS =
∑

16j<k6N

zj zk

(zj − zk) (zk − zj )Pjk (1.1)

wherezk = exp(2π ik/N) is a coordinate for thekth spin and the operatorPjk permutes
the j th andkth su(n) spin states. It was shown [3, 4] that the HamiltonianHHS reveals
the Yangian symmetry even for a finite number of sitesN . Based on this fact, Haldaneet
al [3] proposed the Yangian invariant basis ‘motif’ to classify the energy spectrum and the
degeneracy.

Another important long-ranged interacting su(n) spin chain is the Polychronakos–Frahm
(PF) model [5, 6], whose Hamiltonian is given by

HPF=
∑

16j<k6N

1

(zj − zk)2Pjk. (1.2)

Here the position of thej th spinzj is the zeroth value of theN th Hermite polynomial, i.e.
the equilibrium point of the Calogero model confined in the external harmonic potential,
and the system is not translationally invariant. It was shown [7, 8] that theN -spin PF model
also exactly possesses the Yangian symmetry, and that their eigenstates can also be written
by the motifs. It is of interest that the energy spectrum of the PF model is equally spaced
and that we can calculate the partition functionZN(x; q) for an N -spin chain. This fact
reminds us that the Yangian symmetry is realized in terms of currents of the level-1 su(n)
WZNW theory and that the Virasoro generatorL0 is the lowest conserved operator [9]. In
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fact, the HamiltonianHPF was shown [7] to correspond to the Virasoro generatorL0, and
that the partition functionZN(x; q) reduces in the large-N limit to the affine character of
the su(n)1 WZNW theory,

ch3`(x; q) = lim
N→∞

N≡` (modn)

ZN(x; q).

As the result of this close relationship between the Yangian symmetry and the character
formula, the representation for the motif becomes significant. Haldaneet al [3, 4] established
the representation for the su(2) motifs, but the su(n) motif was not completed. The first
attempt followed from the fact that the partition functionZN(x; q) of the su(n) PF model is
related to the generalized Rogers–Szegö (RS) polynomial; based on the recurrence relation of
the RS polynomial, the representations for the su(n) motifs are established in the recurrence
formulae [7]. Recently two groups [10, 11] have studied the representation for the su(n)
motifs from different points of view, the conformal field theory and the RSOS model.

In this paper, we reconsider the representation of the Yangian invariant su(n) motif. We
stress that the representation is closely related to the RS polynomials. As the RS polynomial
is a degenerate case of the Macdonald polynomial for a one-row Young diagrams, we
shall deform the representation of the Yangian invariant motif. We investigate the role of
parametersq and t in the Macdonald polynomials using this approach.

2. Rogers–Szeg̈o polynomial

The su(n) PF modelHPF has the Yangian symmetry Y(su(n)) as in the case of the HS
modelHHS [7]. The stimulating fact is that the energy spectrum of the PF model is equally
spaced, and that we can exactly calculate its partition functionZN(x; q) = Tr qH

PF
[5]. The

explicit form of the partition function is given by

ZN(x; q) = q [(n−1)/2n]N2
HN(x; q−1). (2.1)

HereHN(x; q) = HN(x1, . . . , xn; q) is called the generalized RS polynomial [12, 13],

HN(x; q) =
∑

k1+···+kn=N
kj>0

[
N

k1, k2, . . . , kn

]
q

x
k1
1 x

k2
2 . . . x

kn
n (2.2)

where theq-multinomial polynomial is defined as

[
N

k1, k2, . . . , kn

]
q

=


(q; q)N
(q; q)k1 . . . (q; q)kn

for k1+ · · · + kn = N andkj > 0

0 otherwise.

We remark that(x; q)k denotes theq-product,

(x; q)k = (1− x)(1− x q) . . . (1− x qk−1) (x; q)0 = 1.

We note in appendix A explicit forms of the RS polynomialsHN(x; q) up to N = 5 in
terms of the Schur functionsλ(x). The RS polynomial may be viewed as theq-deformation
of the Hermite polynomials and its generating function is given as follows

∞∑
N=0

HN(x; q)
(q; q)N zN =

n∏
j=1

1

(xj z; q)∞ . (2.3)



The Yangian invariant motif and the Macdonald polynomial 2449

By settingz → qz in the above identity we obtain the recurrence relation for any (n+ 1)-
consecutive RS polynomials

HN(x; q) =
n∑
k=1

(−)k−1 (q; q)N−1

(q; q)N−k ek(x)HN−k(x; q) (2.4)

whereek(x) is the elementary symmetric function, in terms of the Schur functionsλ(x), the
elementary symmetric functionek(x) is written as

ek(x) = s[1k ](x).
The recurrence relation (2.4) and the initial conditions,HN(x; q) = 0 for N < 0 and
H0(x; q) = 1, uniquely determine theq-polynomialHN(x; q).

It was proved that, from the recurrence relation (2.4) of the RS polynomialHN(x; q),
we can construct the representation for the Yangian Y(su(n)) invariant motif recursively [8].
The motif was first proposed by Haldaneet al [3] as eigenstates of the Yangian invariant
HS spin chain. The construction of the motifs is as follows; for theN -site spin chain we
consider theN − 1 sequence of ‘0’ and ‘1’. Here a ‘0’ and a ‘1’ indicates the absence and
presence, respectively, of the integer corresponding to the position in the sequence. It is
required thatn-consecutive 1s do not occur. When the motif is given we can calculate the
energies for the HS and the PF chains as

EHS =
∑
j

mj (mj −N) (2.5)

EPF=
∑
j

(−mj) (2.6)

wheremj denote a set of positions of 1s. The degeneracy for each motif is given by the
‘representation’ for the motif. It was pointed out [8] that we can translate the recurrence
relation (2.4) for the RS polynomials into one for the motifs. For the su(2) case, we have

(. . .11) = 0 (2.7a)

(. . .10) = ⊗ (. . .1) (2.7b)

(. . .01) = ⊗ (. . .) (2.7c)

(. . .00) = ⊗ (. . .0)− ⊗ (. . .). (2.7d)

From these identities one can see that the su(2) motif can be decomposed into the elementary
motifs (a sequence of ‘0’s) as was pointed out by Haldaneet al [3]; the su(2) representation
is given as a tensor product of each elementary motif, 0. . .0︸ ︷︷ ︸

k

≡ [k− 1]. On the other hand,

for the su(n) case (n > 2) the motif cannot be decomposed into the elementary motifs and
their recurrence relations for the su(3) case are given as follows

(. . .111) = 0 (2.8a)

(. . .110) = ⊗ (. . .11) (2.8b)

(. . .011) = ⊗ (. . .) (2.8c)
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(. . .001) = ⊗ (. . .0)− ⊗ (. . .) (2.8d)

(. . .101) = ⊗ (. . .1) (2.8e)

(. . .010) = ⊗ (. . .01)− ⊗ (. . .0) (2.8f)

(. . .100) = ⊗ (. . .10)− ⊗ (. . .1) (2.8g)

(. . .000) = ⊗ (. . .00)− ⊗ (. . .0)+ ⊗ (. . .). (2.8h)

One can see that the ground state of both the HS and the PF su(n) spin chains withn×N
spins is generally given by the motif

(11. . .1︸ ︷︷ ︸
n−1

0 11. . .1︸ ︷︷ ︸
n−1

01. . .10 11. . .1︸ ︷︷ ︸
n−1

),

and that it is non-degenerate.
Recently the relationship between the generalized RS polynomialHN(x; q) and the

Yangian symmetry was re-examined [10, 11]. Another expression of the RS polynomial
(2.2) in terms of the ‘spinon’ basis was given in [10]

HN(x; q) =
∑

16m1<···<ms6N−1

(−)s (q; q)N−1∏s
i=1(1− q−mi )

s[N−ms ](x)s[ms−ms−1](x) . . . s[m1](x). (2.9)

Heremi denotes a position of a ‘1’ in the su(n) motifs. We shall show that the expression
(2.9) satisfies the recurrence relation (2.4) of the RS polynomial. For our purposes, we use
the property of the Schur function

s[1k ](x)s[m](x) = s[m+1,1k−1](x)+ s[m,1k ](x). (2.10)

The proof is as follows. We split the summation in (2.9) into the disjoint union of two
cases, the position ofN − 1 is 0 or 1. We thus obtain

HN(x; q) =
∑

16m1<···<ms−16N−2

(−)s (q; q)N−1

(1− q−(N−1))
∏s−1
i=1(1− q−mi )

×s[1](x) . . . s[N−1−ms−1](x) . . . s[m1](x)

+
∑

16m1<···<ms6N−2

(−)s (q; q)N−1∏s
i=1(1− q−mi )

s[N−ms ](x) . . . s[m1](x).

By renumbering the position of ‘1’{mj }, we get,

HN(x; q) =
∑

16m1<···<ms6N−2

(−)s (q; q)N−2∏s
i=1(1− q−mi )

×(qN−1s[1](x) · s[N−1−ms ](x)+ (1− qN−1) s[N−ms ](x))
×s[ms−ms−1](x) . . . s[m1](x)

which, due to the property of the Schur function (2.10), reduces to a form

HN(x; q) = s[1](x)HN−1(x; q)− (1− qN−1)
∑

16m1<···<ms6N−2

(−)s (q; q)N−2∏s
i=1(1− q−mi )
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×s[N−1−ms,1](x)s[ms−ms−1](x) . . . s[m1](x).

By applying the property of the Schur function (2.10) recursively, one sees that the
expression (2.9) satisfies the same recurrence relation (2.4) with the RS polynomial (2.2).
With an initial condition of the ‘spinon’-expression (2.9)H0(x; q) = 1, we can conclude
that the expression (2.9) indeed coincides with the RS polynomial.

The other expression for the RS polynomial (2.2) is proposed in [11] based on the
energy function of the path space of the solvable model [14]. The explicit form is given as

HN(x; q) =
N∑
r=1

∑
m1+···+mr=N

16mi6n

q
1
2N(N+1)−∑r

i=1(m1+···+mi)s〈m1,m2,...,mr 〉(x). (2.11)

Here〈m1, m2, . . . , mr〉 denotes the border strip ofr columns such that the length of theith
column ismi ,

↑

... m1

↓ ↑
... m2

↓ ↑
... m3

↓
Functions〈m1,...,mr 〉(x) is the skew Schur function for the border strip〈m1, . . . , mr〉, which,
due to the Jacobi–Trudi formula, is given as

s〈m1,...,mr 〉(x) =

∣∣∣∣∣∣∣∣∣∣∣∣

emr (x) emr+mr−1(x) . . . . . . . . . emr+···+m1(x)

1 emr−1(x) . . . . . . . . . emr−1+···+m1(x)

1 emr−2(x) . . . . . . emr−2+···+m1(x)

. . .
. . .

...
...

1 em2(x) em2+m1(x)

1 em1(x)

∣∣∣∣∣∣∣∣∣∣∣∣
. (2.12)

We see that the skew Schur functions〈m1,...,mr 〉(x) satisfies the following relation

s〈m1,...,mr 〉(x) =
r∑
k=1

(−)k+1emr+···+mr−k+1(x)s〈m1,...,mr−k〉(x). (2.13)

Using this identity for the skew Schur function, we can prove that the ‘path’-expression
(2.11) satisfies the recurrence relation (2.4) of the RS polynomials (see the appendix in
[11]). With an initial conditionH0(x; q) = 1, we can conclude that the expression (2.11)
also denotes the RS polynomial (2.2). The ‘spinon’-expression (2.9) for the RS polynomial
gives us the representation of the motifS as [10]

χS(x) =
∑
S ′⊂S

(−)s−t s[N−mit ](x)s[mit−mit−1 ](x) . . . s[mi1 ](x) (2.14)

wheremi denote the positions of ‘1’s,m1 < m2 < · · · < ms in the motifS. Ordered subsets
of S are used,S ′ = {mi1, mi2, . . . , mit }. One sees that by definition an expressionχS(x)
satisfies the recurrence relations, for example, (2.7) and (2.8).
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Also the ‘path’-expression (2.11) gives the representation for motifs in terms of the skew
Schur function. The strategy is as follows; we read motif from the left. We construct the
skew Young diagram by adding a box under (respectively left) the box when we encounter
‘1’ (respectively ‘0’) in the motif. We take an example from theN = 4 case.

motif S arrow skew Young diagram decomposition

(111) ↓↓↓ 〈4〉 [14]
(110) ↓↓← 〈3, 1〉 [2, 12]
(101) ↓←↓ 〈2, 2〉 [22] ⊕ [2, 12]
(011) ←↓↓ 〈1, 3〉 [2, 12]
(100) ↓←← 〈2, 1, 1〉 [3, 1]
(010) ←↓← 〈1, 2, 1〉 [3, 1]⊕ [22]
(001) ←←↓ 〈1, 1, 2〉 [3, 1]
(000) ←←← 〈1, 1, 1, 1〉 [4]

By definition, the above expression for motifs in terms of the skew Young diagram not only
satisfies (2.14) but also the recurrence relation, for example, (2.7) and (2.8).

3. Macdonald polynomial

We have shown that the representation of the Yangian invariant motif can be constructed
by use of the recurrence relation (2.4) for the RS polynomials. Mathematically, the RS
polynomial is closely related to the Macdonaldq-orthogonal polynomial. The Macdonald
polynomial Pλ(x; q, t) for the Young diagramλ is the eigenfunction of the difference
equation [15]

M̂1Pλ(x; q, t) =
( N∑
j=1

tN−j qλj
)
Pλ(x; q, t). (3.1)

HereM̂1 is the first-order difference operator defined by

M̂1 =
n∑
j=1

( n∏
k=1
k 6=j

txj − xk
xj − xk

)
T̂q,xj (3.2)

whereT̂q,xj is theq-difference operator

(T̂q,xj f )(x) = f (x1, . . . , q xj , . . . , xn)

in terms of the affine Hecke algebra, and the generating function was computed [15]. We
have generating functions of the Macdonald polynomialsPλ(x; q, t). A useful identity
among them is for the one-row Macdonald polynomialP[N ](x; q, t)

n∏
j=1

(txj z; q)∞
(xj z; q)∞ =

∞∑
N=0

(t; q)N
(q; q)N P[N ](x; q, t)zN . (3.3)

Comparing with the generating function for the RS polynomial (2.3), one sees [16] that in
the limit t → 0, the Macdonald polynomial reduces to the RS polynomial

P[N ](x; q, t = 0) = HN(x; q). (3.4)
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See appendix B for the explicit form of the Macdonald polynomials. By applying the
q-binomial theorem in the generating function,

∞∑
N=0

(t; q)N
(q; q)N z

N = (tz; q)∞
(z; q)∞ (3.5)

we obtain the explicit form of the Macdonald polynomialsP[N ](x; q, t) as

P[N ](x; q, t) =
∑

k1+···+kn=N
ki>0

(q; q)N
(t; q)N

(t; q)k1 . . . (t; q)kn
(q; q)k1 . . . (q; q)kn

x
k1
1 . . . x

kn
n . (3.6)

We find by replacingz with qz in the generating function (3.3) that the one-row Macdonald
polynomialsP[N ](x; q, t) satisfy the recurrence relation

P[N ](x; q, t) =
n∑
k=1

(−)k−1ek(x)
(q; q)N−1

(q; q)N−k
(t; q)N−k(1− qN−ktk)

(t; q)N P[N−k](x; q, t). (3.7)

In the following we also use the integral form of the Macdonald polynomial

J[N ](x; q, t) = (t; q)N · P[N ](x; q, t). (3.8)

We now consider the one-parameter deformation of the ‘spinon’- and ‘path’-expressions
for the RS polynomials studied in the previous section. First, as a deformation of the
‘spinon’-expression (2.9), we propose a form

P[N ](x; q, t) =
∑

16m1<···<ms6N−1

(−)s (q; q)N−1∏s
i=1(1− q−mi )

(1− t)s+1

(t; q)N
×P[N−ms ](x; t)P[ms−ms−1](x; t) . . . P[m1](x; t). (3.9)

HerePλ(x; t) is the Hall–Littlewood (HL) polynomial [15] defined by a reduction of the
Macdonald polynomials,

Pλ(x; t) = Pλ(x; q = 0, t)

but, for simple Young diagrams, the HL polynomials are written in terms of the Schur
functionssλ(x) as follows:

P[N ](x; t) =
N−1∑
k=0

(−t)ks[N−k,1k ](x) (3.10)

P[1k ](x; t) = s[1k ](x) = ek(x). (3.11)

We set for our convenience the integral form of the HL polynomialPλ(x; t) [15] as

Qλ(x; t) = bλ(t)Pλ(x; t). (3.12)

Here the polynomialbλ(t) is defined by

bλ(t) =
∏
i>1

(t; t)mi(λ)

wheremi(λ) denotes the number ofλis equal toi. As a one-parameter deformation of an
identity (2.10) of the Schur function, we have an identity for the HL polynomials

Q[r](x; t)Q[1s ](x; t) = (1− t s)Q[r+1,1s−1](x; t)+Q[r,1s ](x; t). (3.13)

By use of the above formula, one can see that the ‘spinon’-expression (3.9) satisfies the
recurrence relation (3.7) for the one-row Macdonald polynomials. The proof is essentially
the same as the case of the RS polynomial discussed in the previous section. With an initial
conditionP[0](x; q, t) = 1, we can conclude that the expression (3.6) coincides exactly with
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the Macdonald polynomial (3.6), and that it gives thet-deformation of the representation
for the Yangian invariant motif (2.9). In conclusion, one sees from (3.9) that, by replacing
the Schur functionssλ(x) by the HL polynomialsPλ(x; t), the order of(1− t) counts a
number of spinons.

In the same way, we shall deform the ‘path’-expression (2.11) of the RS polynomial.
We propose an expression

P[N ](x; q, t) =
N∑
r=1

(tq−1; q−1)N−r
(t; q)r
(t; q)N

∑
m1+···+mr=N

16mi6n

q
1
2N(N+1)−∑r

i=1(m1+···+mi)s〈m1,...,mr 〉(x).

(3.14)

In this case we do not use the skew HL function. By use of an identity of the skew
Schur function (2.13), we can show that above expression satisfies the recurrence relation
of the Macdonald polynomial (3.7) and that an initial conditionP[0](x; q, t) = 1 is satisfied.
Thus the expression (3.14) also coincides with the definition of the one-row Macdonald
polynomial (3.6). We remark that, by comparing the expressions (3.14) and (2.11), the
‘weight’ wr(t, q) of each path depends onr(N − r denotes a number of 1s in the motif,
i.e. the number of quasi-particles)

wr(t, q) = (tq−1; q−1)N−r (t; q)r . (3.15)

4. Concluding remarks

In this paper we have studied the representation of the Yangian invariant motif. The motif
is closely related with the generalized Rogers–Szegö polynomials and we have given three
expressions of the RS polynomial,

HN(x; q) =
∑

k1+···+kn=N
ki>0

[
N

k1, . . . , kn

]
q

x
k1
1 . . . x

kn
n

=
∑

16m1<···<ms6N−1

(−)s (q; q)N−1∏s
i=1(1− q−mi )

s[N−ms ](x)s[ms−ms−1](x) . . . s[m1](x)

=
N∑
r=1

∑
m1+···+mr=N

16mi6n

q
1
2N(N+1)−∑r

i=1(m1+···+mr)s〈m1,...,mr 〉(x).

These expressions give us the representation of the Yangian invariant bases ‘motif’.
As the Macdonald polynomial for one-row Young diagrams can be regarded as the one-

parameter deformation of the RS polynomialHN(x; q), we have proposed the one-parameter
deformation of the previous three expressions. By checking the recurrence relation and the
initial condition we have proved that the Macdonald polynomials for the one-row Young
diagram can be expressed as follows:

J[N ](x; q, t) =
∑

k1+···+kn=N
kj>0

(q; q)N (t; q)k1 . . . (t; q)kn
(q; q)k1 . . . (q; q)kn

x
k1
1 . . . x

kn
n

=
∑

16m1<···<ms6N−1

(−)s (q; q)N−1∏s
i=1(1− q−mi )

(1− t)s+1P[N−ms ](x; t)
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× P[ms−ms−1](x; t) . . . P[m1](x; t)

=
N∑
r=1

(tq−1; q−1)N−r · (t; q)r
∑

m1+···+mr=N
16mi6n

q
1
2N(N+1)−∑r

i=1(m1+···+mi)s〈m1,...,mr 〉(x).

These expressions show that a deformation parametert is related to a number of 1s in motifs,
i.e. a number of quasi-particles. We do not know whether the Macdonald polynomial for
arbitrary Young diagrams may be constructed by these combinatorial methods.

Acknowledgments

The author would like to thank Miki Wadati for his kind interest in this work. He also thanks
A N Kirillov, A Kuniba and K Sogo for stimulating discussions. This work is supported
in part by a Grant-in-Aid for the Encouragement of Young Scientists from the Ministry of
Education, Science, Sports and Culture, of Japan.

Appendix A. Rogers–Szeg̈o polynomials

H0(x; q) = 1

H1(x; q) = s[1](x)

H2(x; q) = s[2](x)+ qs[12](x)

H3(x; q) = s[3](x)+ q(1+ q)s[2,1](x)+ q3s[13](x)

H4(x; q) = s[4](x)+ q(1+ q + q2)s[3,1](x)q
2(1+ q2)s[22](x)

+q3(1+ q + q2)s[2,12](x)q
6s[14](x)

H5(x; q) = s[5](x)+ q(1+ q)(1+ q2)s[4,1](x)q
2(1+ q + q2+ q3+ q4)s[3,2](x)

+q3(1+ q2)(1+ q + q2)s[3,12](x)q
4(1+ q + q2+ q3+ q4)s[22,1](x)

+q6(1+ q)(1+ q2)s[2,13](x)q
10s[15](x).

Appendix B. Macdonald polynomial

J[0](x; q, t) = 1

J[1](x; q, t) = (1− t)s[1](x)

J[2](x; q, t) = (1− t)(1− tq)s[2](x)+ (1− t)(q − t)s[12](x)

J[3](x; q, t) = (1− t)(1− tq)(1− tq2)s[3](x)+ (1+ q)(1− t)(1− tq)(q − t)s[2,1](x)

+(1− t)(t − q)(t − q2)s[13](x)

J[4](x; q, t) = (1− t)(1− tq)(1− tq2)(1− tq3)s[4](x)

+(1+ q + q2)(q − t)(1− t)(1− tq)(1− tq2)s[3,1](x)

+q(1+ q2)(q − t)(1− t)2(1− tq)s[22](x)

+(1+ q + q2)(1− t)(1− tq)(q − t)(q2− t)s[2,12](x)

+(1− t)(q − t)(q2− t)(q3− t)s[14](x)

J[5](x; q, t) = (1− t)(1− tq)(1− tq2)(1− tq3)(1− tq4)s[5](x)

+(1+ q)(1+ q2)(q − t)(1− t)(1− tq)(1− tq2)(1− tq3)s[4,1](x)

+q(1+ q + q2+ q3+ q4)(1− t)2(q − t)(1− tq)(1− tq2)s[3,2](x)

+(1+ q2)(1+ q + q2)(q − t)(q2− t)(1− t)(1− tq)(1− tq2)s[3,12](x)
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+q(1+ q + q2+ q3+ q4)(1− t)2(q − t)(q2− t)(1− tq)s[22,1](x)

+(1+ q)(1+ q2)(q − t)(q2− t)(q3− t)(1− t)(1− tq)s[2,13](x)

+(q − t)(q2− t)(q3− t)(q4− t)(1− t)s[15](x).
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